Вред галлюциногенных грибов: какой эффект

Мухомор красный Псилоцибе кубинская, выращиваемая в помещении
Галлюциноге́нные грибы́

(психогенные, псилоцибиновые, «магические», «волшебные» грибы) — общепринятое название видов грибов, плодовые тела которых содержат галлюциногенные (психоделические) вещества. Употребление таких грибов оказывает влияние на сознание и вызывает переживания, называемые психоделическим опытом, или трипом.

С древности галлюциногенные грибы употреблялись человеком в качестве энтеогенов при проведении религиозных церемоний, а также в небольших дозах как психостимуляторы.

Согласно некоторым источникам, регулярное неконтролируемое употребление психогенных грибов может приводить к опасным негативным последствиям как для психики, так и для физического здоровья[1]. По результатам других исследований, какой-либо связи между употреблением псилоцибиновых грибов и нарушениями психического здоровья выявлено не было[2].

Исторические сведения[ | ]

Человечеству с древности известны психотропные свойства некоторых грибов, чему сохранилось множество археологических свидетельств. Таким грибам приписывались магические свойства[3][4][5] и они употреблялись при проведении религиозных ритуалов.

Древнейшие наскальные изображения ритуалов, в которых использовались психоактивные грибы, известны в Африке и имеют возраст 6500—9000 лет. Такие рисунки известны в Алжире (Тассилин-Аджер), в Ливии (горы Тадрарт-Акакус), Чаде (плато Эннеди), Египте (Джебель-Оунат, en:Jebel Uweinat)[4][5].

В Индии (штат Керала, близ деревни Черманангад) существуют мегалиты в виде грибов возрастом более 3000 лет, которые носят название kudakallu

— «зонтичные камни»[4]. В Риг-веде около тысячи гимнов посвящено священному опьяняющему напитку «сома», который, по мнению Р. Г. Уоссона (1968)[6], готовился из красных мухоморов. Древние индийцы считали, что сома позволяет сохранить здоровье, продлевает жизнь, и человек, употребляющий напиток, сливается с божеством. Однако связь между сомой и
kudakallu
не выяснена, эти сооружения были поставлены в эпоху дравидийской цивилизации, существовавшей в Индии до прихода ариев.

Психотропные грибы (зёрна пшеницы, заражённые спорыньёй) предположительно использовались и в древней Греции в церемониях Элевсинских таинств[4][5].

Статуэтки в форме грибов, созданные индейцами майя (1000 до н. э. — 500 н. э.)

Распространено было употребление психогенных грибов у индейцев доколумбовой Мексики и Центральной Америки. Так, красный мухомор был священным грибом у древних майя[7][8], псило́цибе уже 3000 лет назад использовали в религиозных ритуалах ацтеки[5]. Ацтеки называли эти грибы «теонана́катль

» — «тело бога», и употребляли его только избранные и посвящённые[9]. В Гватемале обнаружены капища возрастом более 2500 лет с изваяниями магического гриба с человеческим лицом[5]. Ритуалы с использованием галлюциногенных грибов сохранились у центральноамериканских племён вплоть до настоящего времени[10][11].

Мухоморы использовались в средние века викингами[источник не указан 149 дней

][7], а также на протяжении столетий — шаманами северных народов, обитающих на Таймыре, Камчатке и Чукотке[7][12]. Поедание мухоморов у этих народов было привилегией вождей и шаманов, остальные же пили их мочу[7][13], причём действие мочи сохраняется после «пропускания» её через 4—5 человек[14]. Это объясняется тем, что именно в моче накапливается мусцимол — метаболит иботеновой кислоты и основное галлюциногенное вещество мухомора. Употребление мухоморов зависело от обычаев племени. Известно до 15 способов употребления мухоморов — их ели в сыром, жареном, печёном, сушёном виде, готовили экстракты и отвары, употребляли мясо наевшихся грибов северных оленей. В шаманских ритуалах использовали старые плодовые тела, охотникам же для повышения выносливости давали молодые нераскрывшиеся шляпки, очищенные от кожицы, в которой содержится наибольшее количество действующих веществ[15]. Для европейцев употребление половины мухомора считается экстремальным, поедание 3 плодовых тел может оказаться смертельным, для народов же, традиционно употреблявших гриб, обычно разовое употребление 1—11 грибов и даже до 21[16][15].

В 1960—1970-х годах распространилось употребление «магических грибов» в Америке, которое затем перешло в Европу и приняло массовый характер[17][18]. В конце XX — начале XXI века среди людей, употребляющих галлюциногены, использование грибов рода Psilocybe

вытесняет другие природные психоделики[19][20][21].

Псилоцибиновые грибы

https://www.youtube.com/watch?v=ytaboutru

Химическая структура грибов включает индолсодержащие соединения: псилоцин, псилоцибин, триптамин. Эти вещества обнаружены в грибах семейства строфариевых, рода псилоцибе (P. Psilocybe): псилоцибе мексикана (P. mexicana), псилоцибе запотекорум (P. zapotecorum), псилоцибе полуланцетовидная (P. semilanceata), псилоцибе каллоза (Р.

callosa), псилоцибе пелликулоза (P. pelliculosa), а также в грибах панеолус сфинктринус (Panaeolus sphinctrinus), панеолус суббалтеатус (Panaeolus subbalteatus), коносиб цианопус (Conocybe cyanopus). Степень выраженности наркотического действия перечисленных грибов различна. У одних видов это действие постоянное, у других оно спорадическое. В зависимости от этого они подразделяют на два вида:

  • I вид — грибы, всегда вызывающие психодислептический эффект: псилоцибе мексикана, псилоцибе запотекорум. Оба произрастают в Центральной и Южной Америке;
  • II вид — грибы с непостоянным психодислептическим эффектом: псилоцибе полуланцетовидная, псилоцибе сербика (P. serbica), панеолус суббалтеатус, панеолус кампанулатус (Panaeolus campanulatus), панеолус сфинктринус (Panaeolus sphinctrinus).

Псилоцибе полуланцетовидная (Psilocybe semilanceata) фото

Концентрационные показатели отдельных соединений и их метаболитов определяются составом почвы, погодными условиями и сезонностью сбора. Грибы произрастают в Европе, Азии, Америке.

Псилоцибе полуланцетовидная (Psilocybe semilanceata) — выглядит этот гриб мало привлекательно, растет на территории России в Ленинградской области и на Дальнем Востоке. Период роста — с августа по октябрь. Неприхотлив, встречается в лесах, на болотах, торфяниках. Шляпка полушаровидная, коническая, с заостренной вершиной, бледно-желтая, коричневатая, в центре более темная.

Край морщинистый, плиссированный. Кожица тонкая, слизистая. Размер шляпки 0,5-1,5 см. Пластинки кремовые, узкие. Ножка центральная, цилиндрическая, внутри с полостью, длиной 2,5-8 см, толщиной 0,1-0,3 см. Цвет ножки кремовый. Мякоть кремовая, без особого запаха, немного горьковатая.

Панеолус суббалтеатус (Panaeolus subbalteatus) фото

Панеолус суббалтеатус (Panaeolus subbalteatus) на территории России распространен в центральных регионах и Средней Сибири. Шляпка коническая, иногда с возвышением в центре, 3-5 см в диаметре, край рубчатый. Цвет шляпки рыжевато-коричневый.Пластинки серые, местами с черными пятнами. Ножка цилиндрическая» коричневатая, длиной 6-9 см, толщиной 0,2-0,5 см. Мякоть беловато-серая, с неприятным грибным запахом. Вкус свежего гриба немного горьковатый, высушенный гриб безвкусен.

Грибы псилоцибе содержат алкалоиды, аминокислоты и ряд химических соединений, вызывающих у человека нарушение деятельности центральной и периферической нервной системы. Среди аминокислот в высокой концентрации содержится незаменимая аминокислота триптофан. В процессе роста гриба аминокислота подвергается ферментативному расщеплению и образует биологически активные вещества: триптамин, псилоцибин, псилоцин и др.

К веществам, воздействующим на обменные процессы в нервной клетке и синаптическую проводимость, относятся следующие соединения и их метаболиты.

  1. Триптофан (индоламин) — незаменимая аминокислота, входит в состав белков и ферментов. В грибах является предшественником биологически активных веществ. В печени в результате гидроксилирования образует триптамин.
  2. Триптамин — его метаболизм осуществляется в печени с образованием псилоцибина, серотонина (серотониновый путь), лизергиновой кислоты. В толстом кишечнике при активном участии бактерий расщепление триптамина происходит с образованием индолилуксусной и индолилпировиноградной кислот (индольный путь), конечным продуктом которых является токсичный индол.
  3. Баеоцистин — предшественник псилоцибина, алкалоид.
  4. Псилоцибин (4-фосфорилоксиоз, N-диметилтриптамин) — выделен из гриба Psilocybe, обладает галлюциногенным действием. В развитии синдрома псилоцибин является одним из основных химических соединений.
  5. Псилоцин (4-окси-, N-диметилтриптамин) — образуется из псилоцибина в результате реакции дефосфорилирования.
  6. Индол — токсичное соединение, метаболизируется в печени, где образуется индоксилсерная и индоксилглюкуроновая кислоты. Из организма выводится с мочой.
  7. Серотонин (5-окситриптамин) обнаружен в грибах в малой концентрации. В организме образуется в результате метаболизма триптамина. Активно действует на серотонинергические рецепторы, оказывая возбуждающее действие на нервные клетки головного мозга и окончания блуждающего нерва в сердце, сокращает гладкую мускулатуру внутренних органов.
  8. Буфотенин — образуется из серотонина при его метилировании. Обладает галлюциногенными свойствами.
  9. Лизергиновая кислота — малоактивное соединение.

Наибольшее количество индолсодержащих алкалоидов обнаружено в псилоцибе полуланцетовидной — в российских образцах содержание псилоцибина — 1,1-1,6% на 1 г сухой массы. Соотношение компонентов в галлюциногенных грибах непостоянно и определяется составом почвы, метеорологическими условиями, возрастом гриба и др.

Способ употребления

Галлюциногенные грибы, как правило, потребляются в сыром виде, потому что, вызывают сильнейшие ощущения через 20-40 минут после приема. Описаны также примеры добавления их в напитки или продукты питания.Большинство из них хранят в виде сушеных или замороженных, которые в значительной степени сохраняет свою высокую активность.

Виды и их действующие начала[ | ]

Как галлюциногенные известны главным образом некоторые мухоморы и относительно большая группа видов из различных семейств порядка агариковых, плодовые тела которых содержат псилоцин и псилоцибин — так называемые «псилоцибиновые грибы». Из последних наибольшее значение имеет род Псилоцибе (Psilocybe

) семейства строфариевых. Есть данные, что иногда в качестве энтеогена в древности использовалась спорынья, несмотря на её высокую общую токсичность и высокий риск смертельного отравления.

Мухоморы[ | ]

Иботеновая кислота Мусцимол
Галлюциногенные виды этого рода относятся к секции Amanita

подрода
Amanita
(см. Систематика рода Мухомор). Галлюциногенное действие их обусловлено наличием иботеновой кислоты и мусцимола, некоторые виды могут содержать триптамины — буфотенин, диметилтриптамин (ДМТ) и 5-метоксидиметилтриптамин (5-MeO-ДМТ). Основные действующие вещества мухоморов токсичны, к тому же эти грибы обычно содержат и другие сильные яды, такие, как мускарин, обладающий нейротоксическим действием, и их употребление может привести к смертельному отравлению.

Мусцимол является продуктом метаболизма иботеновой кислоты и накапливается в старых плодовых телах, а также при сушке и хранении[22], что приводит к повышению общей токсичности, так как мусцимол приблизительно в 5—10 раз токсичнее иботеновой кислоты[1]. При длительном хранении высушенных плодовых тел эти вещества постепенно разрушаются, в экземплярах, хранившихся 7 лет они уже не были выявлены[22].

  • Мухомор красный (Amanita muscaria
    ) — один из наиболее обычных и известных мухоморов. Суммарное содержание иботеновой кислоты и мусцимола в плодовых телах достигает 0,18 % от сухого веса[23][24]. Очень свежие плодовые тела могут не содержать мусцимола[25]. Содержит также небольшие количества мускарина и мусказона, этиламин, путресцин, мускаридин, мускофлавин, амавадин, стизолобиковую кислоту, ацетилхолин и некоторое количество гиосциамина, атропина и скополамина[23][26][27] (хотя более поздние исследования не подтвердили наличие гиосциамина, атропина и скополамина[1]).
  • Мухомор пантерный (Amanita pantherina
    ) также очень распространён и обычен, содержание в нём иботеновой кислоты — около 0,45 %, а мусцимола — до 0,2 % от веса свежих грибов[23][24]. Отравление пантерным мухомором во многом сходно с отравлением мухомором красным, однако имеет свои особенности, поэтому иногда рассматривается как характерный
    пантериновый синдром
    . Симптомы его напоминают острую алкогольную интоксикацию, переходящую затем в глубокий сон[28].
  • Мухомор королевский (Amanita regalis
    ) вызывает отравление, сопровождающееся галлюцинациями и потерей сознания, при помощи тепловой обработки нейтрализовать действие его ядов не удаётся[29].
  • Мухомор поганковидный (Amanita citrina
    ) и Мухомор серый (
    Amanita porphyria
    ) содержат психотропные вещества триптаминового ряда — буфотенин, ДМТ и 5-MeO-ДМТ. Содержание действующих веществ в этих грибах невысокое (содержание буфотенина в мухоморе поганковидном не превышает 0,007 %), поэтому данные об отравлениях ими отсутствуют[22].

Псилоцибиновые грибы[ | ]

Псилоцибин Псилоцин
Кроме представителей рода псило́цибе, псилоцибин обнаружен у некоторых грибов из родов Коноцибе (Conocybe

), Агроцибе (
Agrocybe
), Панеолус (
Panaeolus
), Псатирелла (
Psathyrella
), Гимнопил (
Gymnopilus
),
Copelandia
[30][31], Волоконница (
Inocybe
)[32]:18—19.

Действующим веществом их является псилоцин, который попадает в организм непосредственно из плодовых тел, а также образуется в кишечнике при дефосфорилировании псилоцибина; приём эквимолярных количеств этих веществ оказывает одинаковое действие[33]. Общая токсичность их невысока, LD50 псилоцибина составляет 280 мг/кг для крыс при внутривенном введении[34], для человека при оральном введении острая летальная доза около 14 г[1], что значительно превышает действующую дозу, вызывающую галлюцинации (1—14 мг[35]). Встречается мнение, что псилоцибиновые грибы не следует относить к категории ядовитых грибов, однако, действие психотомиметиков рассматривается как отравление[36][34][18], к тому же грибы могут содержать другие действующие вещества, значительно более токсичные, поэтому в научной и популярной литературе их всё же относят к ядовитым. Всего известно около 200 видов псилоцибинсодержащих грибов. О наличии в плодовых телах псилоцина/псилоцибина или других диметилтриптаминов можно судить по косвенному признаку — посинению или позеленению мякоти при автооксидации. Предполагают, что при окислении этих веществ образуются окрашенные стабильные свободные радикалы[37]. При нагревании с водой до 150°С псилоцибин превращается в псилоцин[38], а при длительном кипячении психоактивные компоненты этих грибов разрушаются, и они становятся съедобными[5]. При сушке теряется до 50 % активности псилоцибиновых грибов[7].

Псилоцибе полуланцетовидная

  • Род Псилоцибе (Psilocybe
    ). Описано около 140 видов этого рода, для более, чем 115 из них подтверждено наличие псилоцибина и психоактивных свойств[39][30][4]. Большинство галлюциногенных псило́цибе произрастают в естественных условиях в Америке, особенно в районе Карибского бассейна (Мексика и Центральная Америка)[30]. В России наибольшее распространение отмечается в Карелии, Республике Коми, на необрабатываемых полях в Ленинградской области.
  • Одним из наиболее изученных видов является псилоцибе кубинская (Psilocybe cubensis
    ), хорошо поддающаяся искусственному разведению и сохраняющая психоактивность в тепличных условиях[40][41][10][42]. Содержание действующих веществ в плодовых телах этих грибов зависит от условий роста и периода плодоношения, неодинаково оно и в разных частях гриба[41]. Псилоцин, как и псилоцибин, примерно одинаково распределены в шляпке и в ножке(хоть иногда в шляпках содержится больше действующего вещества)
    P. cubensis
    [43], его содержание достигает 0,15 % от веса плодовых тел[7], а содержание псилоцибина — от 0,01 % до 1,3 %. Мицелий
    P. cubensis
    также содержит 0,01—2 % псилоцибина[40][44]. Многие виды псило́цибе содержат деметилированные аналоги псилоцибина — беоцистин[45] и норбеоцистин (впервые они были обнаружены у
    Psilocybe baeocystis
    ), у некоторых обнаружены фенилэтиламин и 4-гидрокситриптамин (изомер серотонина)[46][23][47]. Содержание беоцистина и норбеоцистина невысоко и эти вещества не оказывают заметного действия, но при регулярном употреблении могут вызывать нарушения триптофанового обмена и повышение концентрации серотонина в коре головного мозга, что может привести к психическим заболеваниям[48] (см. Серотониновый синдром).
  • Волоконница (Inocybe
    ). Псилоцибин обнаружен у 5 видов[39], например, у волоконницы синевато-зелёной (
    Inocybe aeruginascens
    ). Мускарин у этого вида отсутствует[32]:313—314, для большинства других волоконниц характерно наличие этого яда в смертельных количествах. У волоконницы синевато-зелёной обнаружено относительно высокое содержание беоцистина (0,21 %)[49]. Виды волоконниц очень трудно правильно определить неспециалисту.
  • Гимнопил (Gymnopilus
    ). Галлюциногенные свойства обнаружены у 14 видов[39], кроме псилоцибина некоторые виды содержат вещества, по химической структуре сходные с кавалактонами (en:Kavalactone) — действующими веществами растения перец опьяняющий (
    Piper methysticum
    )[50]. Большинство видов этого рода имеют очень горький вкус.
  • Панеолус (Panaeolus
    ).

Доступность и применение

Псилобициновые грибы в диком виде растут в различных частях США; более двенадцати видов из них, содержащих псилобицин в качестве активного ингридиента, были обнаружены произрастающими на северо-западном побережье Тихого океана. Также существует некоторое количество видов таких грибов, которые можно выращивать при помощи недорогих и достаточно простых технологий. США и Мексика на данный момент признаны основными источниками псилобицина и самих галлюциногенных грибов.

Как правило, такие грибы употребляют непосредственно в пищу, однако, их также заваривают и в виде чая. В связи с тем, что ои имеют достаточно горький вкус, довольно часто галлюциногенные грибы готовят вместе с другими ингридиентами или пдают с другими блюдами. Псилобицин является основным активным компонентом таких магических грибов, ни кипячение, ни другие виды приготовления пищи не деактивируют данный активный компонент галлюциногенных грибов.

К настоящему времени были описаны приблизительно 190 видов галлюциногенных грибов, которые содержат псилобицин, каждый из этих видов обладает различной концентрацией псилобицина, при этом активная форма данного вещества также широко варьируется. В зависимости от видовой принадлежности употребляемая дозировка волшебных сухих грибов составляет от одного до пяти граммов. Дозировка свежих грибов является почти в десять раз большей и составляет от десяти до пятидесяти граммов.

Псилобициновые грибы являются на сегодняшний день одним из наиболее дорогих психоделических препаратов; в зависимости от спорса и предложения цена одной унции сухих галлюциногенных грибов варьируется от ста до трехсот долларов. Именно поэтому многие индивидуумы, которые употребляют такие волшебные психоделические грибы, в итоге имеют достаточно серьезные финансовые трудности.

Активными ингридиентами галлюциногенных грибов является как псилобицин, так и псилоцин. Оба вещества могут быть произведены естественным образом при соблюдении всех правил культивации, но их также можно и искусственно синтезировать. Тем не менее на данный момент не существует веских доказательств того, что на территории США производят синтетические псилоцин и псилобицин.

Смотрите также: Развитие алкоголизма

Действие галлюциногенных грибов[ | ]

Действие мухоморов[ | ]

Симптомы отравления мухоморами (красным, пантерным, королевским) начинают проявляться через 0,5—4 часа[23][51]. Влияние на нервную систему проявляется в виде психомиметических симптомов, иногда сопровождающихся галлюцинациями. Для синдрома, вызываемого A. muscaria

и
A. pantherina
характерны чередующиеся фазы дремоты и возбуждения, головокружение, истерия, атаксия, гиперкинезы, судороги и миоклонические вздрагивания[52][53]. При засыпании может возникать усиление сновидений[54].

Психогенное действие обусловлено главным образом мусцимолом, который накапливается в плодовых телах мухоморов с возрастом и при хранении. Предполагается, что мусказон, содержащийся в грибах в незначительном количестве, и менее токсичная иботеновая кислота усиливают действие мусцимола (эффект синергизма)[8][7]. Считалось, что мусцимол образуется в человеческом организме в результате метаболизма иботеновой кислоты[25], но при более поздних исследованиях в продуктах экскреции мусцимол не был обнаружен после приёма чистой иботеновой кислоты[22][55]. К тому же, иботеновая кислота выводится из организма в течение 20—90 минут после орального введения[7][55], а при поедании мухоморов большинство симптомов проявляется через 1 час, а интоксикация — через 5 часов после пика экскреции иботеновой кислоты[22]. Бо́льшая часть мусцимола выводится из организма в течение 6 часов[22].

Показано, что мусцимол и иботеновая кислота способны вызывать гибель нейронов и разрушение мозговой ткани. Такое действие связывают с активацией этими веществами NMDA-рецепторов, что приводит к повышенной выработке токсичного оксида азота (II)[56][57].

Мускарин, хотя и не содержится в этих грибах в смертельных количествах, оказывает действие на парасимпатическую нервную систему[58], и отравление может сопровождаться диареей, тошнотой, рвотой, потением, слюно- и слёзотечением[8].

Действие псилоцибиновых грибов[ | ]

Действие псилоцибина и псилоцина сходно с действием ЛСД, по мнению некоторых психиатров эти вещества вызывают психомиметический синдром, сходный с проявлениями шизофрении[59]. Первые симптомы появляются через 15—20 минут после употребления псило́цибе, при приёме на сытый желудок — примерно через 2 часа. Вначале возникают ошеломлённость, тремор, эйфория, бред, беспокойство, паранойя, повышение слуховой и зрительной восприимчивости, ощущение искажения пространства и времени, нарушение восприятия скорости, освещённости и цвета[33][60][61], затем появляются необычные видения, галлюцинации, исчезает ощущение пространства и времени, человек как бы наблюдает за собственным телом со стороны[62]. Как и в случае со многими другими психоделическими веществами, эффекты и ощущения от приёма псилоцибиновых грибов могут значительно различаться как среди разных людей так и в разных обстоятельствах.

Эмоциональные переживания во время трипа могут быть как позитивными, так и негативными, и их тип зависит от многих факторов: при плохом самочувствии, переутомлении может наблюдаться повышенная чувствительность к псилоцибину и возникновение негативных эмоций. При развитии псилоцибинового синдрома по негативному типу возникают чувство беспокойства, приступы ярости, агрессивность, склонность к насилию, в том числе по отношению к самому себе, бред, возможна полная потеря сознания. Могут возникать повторяющиеся приступы паники, иногда попытки самоубийства[63]. При позитивном типе психоделического опыта наблюдается ощущение счастья, смех, освобождение от чувства угнетённости, эротическое влечение, деперсонализация и цветовые галлюцинации, во время которых возникает ощущение перемещения в пространстве и во времени[64]. Важную роль играют психическая уравновешенность человека и общий уровень культуры, обстоятельства, в которых находится человек во время приёма галлюциногенных грибов[65].

Псилоцибиновый синдром сопровождаются усилением активности симпатической нервной системы, вследствие чего наблюдается расширение зрачков, учащение сердцебиения, повышение температуры тела[7][66][67], изменяется проприоцептивная чувствительность, нарушается двигательная и речевая координация[68][66][69][70][71]. Человек, переживающий трип, в полной мере осознаёт нереальность происходящего[72].

Физическая зависимость и абстинентный синдром при употреблении псилоцибина не развиваются, но при регулярном употреблении может возникнуть психическая зависимость[62][73][74]. Опыты на животных[75] показали что высокие дозировки «магических» грибов могут приводить к демиелинизации (разрушению миелиновых оболочек) и дистрофическим изменениям нейронов гиппокампа[76][77]. Употребление некоторых псило́цибе, в частности P. semilanceata

, может приводить к нарушениям сердечной деятельности и почечной недостаточности[36][78][79]. Согласно результатам исследования негативного влияния наркотических веществ в Великобритании, псилоцибиновые грибы являются наименее опасным наркотиком, применяемым в рекреационных целях[80]. Другие исследователи также о псилоцибина по отношению к органам человеческого тела, подчёркивая, что риски, связанные с приёмом псилоцибиновых грибов, косвенные: большие дозы могут вызывать чувство страха, что может повлечь за собой опасное поведение[81].

Лечение псилобициновой зависимости и реабилитация

Идентификация и нахождение действительно хорошего и надежного центра лечения и реабилитации относительно зависимости от псилобициновых грибов может оказаться достаточно трудным, поскольку немногие центры имеют такие программы.

Галлюциногенные грибы, как и другие психоделические препараты не провоцируют развитие аддикции или физической зависимости. Тем не менее длительное употребление таких грибов может привести к умеренной и средней переносимости их активных ингридиентов, что, в свою очередь, ведет к повышению употребляемой дозы для получения желаемого эффекта. также возможно развитие психологической зависимости средней и умеренной степени, особенно если индивидуум применяет грибы в терапевтических целях.

Псилобицин не вызывает летальных симптомов абстинентного синдрома, в результате чего детоксификация при лечении пристрастия к галлюциногенным грибам не требует замещающей терапии. Тем не менее поскольку химические соединения псилобициновых грибов накапливаются в жировой ткани, то резкое прекращение псилобицина все же может привести к развитию абстинентных симптомов средней и умеренной степени тяжести. Медленное и постепенное снижение дозировки принимаемых галлюциногенных грибов является основной рекомендацией для предотвращения негативных побочных эффектов, которые могут быть связаны с абстинентным синдромом. Также иногда рекомендуют проводить сенсорную стимуляцию для того, чтобы понизить симптомы расстройства восприятия галлюциногенов. Во время детоксификации также в схему лечения вводят бензодиазепины для предотвращения или контролирования конвульсий и состояния возбуждения.

Смотрите также: Вред курительных смесей

Следует отметить, что детоксификация сама по себе не является достаточной для избавления от развившейся аддикции относительно псилобициновых грибов. Довольно часто центры по лечению предлагают и программы реабилитации, чтобы укрепить и ускорить восстановление. Также предлагаемые программы включают некоторые виды бихейвиоральной терапии, например, когнитивно-бихейвиоральную терапию. После окончания реабилитационной программы в центре пациенты могут продолжить получать помощь амбулаторно, включая мотивационные интервью, различные виды семейной терапии.

Правовой статус[ | ]

В этом разделе не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 6 апреля 2020 года

.

В большинстве стран оборот галлюциногенных грибов (включая их сбор, выращивание, продажу и хранение) запрещён. В России запрет оборота психогенных грибов следует из статьи 231 УК РФ («Незаконное культивирование растений, содержащих наркотические средства или психотропные вещества либо их прекурсоры»)[82], статей 10.5, 10.5.1 КоАП РФ («Непринятие мер по уничтожению дикорастущих растений, содержащих наркотические средства или психотропные вещества либо их прекурсоры» и «Незаконное культивирование растений, содержащих наркотические средства или психотропные вещества либо их прекурсоры», соответственно)[83], постановления Правительства РФ от 27 ноября 2010 г. № 934 и других документов.

Примечания[ | ]

  1. 1234М. Г. Молдаван, А. А. Гродзинская.
    Общетоксическое и нейротропное действие базидиальных грибов родов Amanita и Psilocybe. — Институт физиологии им. А. А. Богомольца НАН Украины; Институт ботаники им. М. Г. Холодного НАН Украины, Киев. (см. #Ссылки)
  2. Psychedelics and Mental Health: A Population Study (неопр.)
    (19 августа 2013).
  3. Захаров И.А., Касперявичус М.М.
    Грибы в мифах и обрядах. (Краткий очерк этномикологии) // Микология и фитопатология : Журнал. — 1981. — Т. 15, № 1. — С. 66—72.
  4. 12345Samorini G.
    New data from the ethnomycology of psychoactive mushrooms (англ.) // Intern. J. Med. Mush : Журнал. — 2001. — Vol. 3, no. 2—3. — P. 257—278.
  5. 123456Stamets P.
    Growing Gourment and Medicinal Mushrooms. — Berkeley: Ten Speed Press, 1995. — С. 259—277.
  6. Wasson R.G.
    Soma. The Divine Mushroom of Immortality. — New York: Harcourt Brace Jovanovich, 1968. — 251 с.
  7. 123456789Hobbs C.
    Medicinal mushrooms. An exploration of Tradition, Healing, Et Culture. — Botanica Press, Interweave Press, 1996. — 252 с.
  8. 123Cooke R.C.
    Magic mushrooms and hallucinogenic drugs // Fungi, Man and His Environment. — London: Longman, 1977.
  9. Ott J., Bigwood Y.
    Teonanacatl. Hallucinogenic mushrooms of North America. — Seattle: Madrona Publishers Inc., 1977.
  10. 12Heim R., Wasson R.G.
    Les Champignons hallucinogens du Mexique // Arch. Mus. Nat. Hist. Natur. — 1958. — Т. 6.
  11. Schultes R.E.
    Hallucinogens of plant origin (англ.) // Science. — 1969. — Vol. 163, no. 3864. — P. 245—264.
  12. Wasson V.P., Wasson R.G.
    Russia, Mushrooms and History. — New York: Pantheon Books, 1957.
  13. Ramsbottom J.
    The new naturalist mushrooms and toadstools. A. Study of the Activities of Fungi. — London: Collins, 1953.
  14. Ott J.
    Psycho-mycological studies of Amanita —from ancient Sacrament to modern phobia // J. Psychedelic drugs : Журнал. — 1976. — Т. 8. — С. 27—35.
  15. 12Saar M.
    Ethnomycological data from Siberia and North-East Asia on the effect of Amanita muscaria // J.Ethnopharmacol : Журнал. — 1991b. — Т. 31. — С. 157—173.
  16. Saar M.
    Fungi in Khanty Folk Medicine // J.Ethnopharmacol : Журнал. — 1991a. — Т. 31. — С. 175—179.
  17. Hyde C., Glancy G., et al.
    Abuse of indegenous psilocybin mushrooms: a new fashion and some psychiatric complications (англ.) // British Journal of Psychiatry : Журнал. — Royal College of Psychiatrists (англ.)русск., 1978. — Vol. 132.
  18. 12Peden N.R., Pringle S.D., Crooks J.
    The problem of psilocybin mushroom abuse (англ.) // Lloydia (англ.)русск.. — 1976. — Vol. 39, no. 4. — P. 258—261.
  19. Lassen J.F., Lassen N.F., Skov J.
    Consumption of psilocybin-containing hallucinogenic mushrooms by young people // Ugeskr. Laeger : Журнал. — 1992. — Т. 154, № 39. — С. 2678—2681.
  20. Lohrer F., Kaiser R.
    Biological hallucinogens. New patterns of substance abuse in young addicts? (англ.) // Nature : Журнал. — 1967. — Vol. 215, no. 107. — P. 1292—1293.
  21. Thompson J.P., et al.
    Mushroom use by college students // J. Drug Educ : Журнал. — 1985. — Т. 15, № 2. — С. 111—124.
  22. 123456Chilton W.S.
    Chemistry and Mode of Action of Mushroom Toxins. Mushroom Poisoning: Diagnosis and Treatment. —Ed.: B.H. Kumach, E. Salzman. — Palm Beach: CRC Press. Inc., 1978. — С. 87—124.
  23. 12345Шиврина А.Н.
    Биологически активные вещества высших грибов. — Л.: Наука, 1965.
  24. 12Benedict R.G., Tyler V.E., Brady L.R.
    Chemotaxonomic significance of isoxasole derivatives in Amanita spicies) (англ.) // Lloydia (англ.)русск.. — 1966. — Vol. 29. — P. 333—342.
  25. 12Eugster C.H., Muller G.F. and R. Good.
    The active ingredients from Amanita muscaria: ibotenic acid and muscazone // Tetrahedron Lett. — 1965. — Т. 23. — С. 1813—1815.
  26. Chilton W.S., Ott J.
    Toxic metabolites of Amanita pantherina, A.cothurnata, A.muscaria and other Amanita species (англ.) // Lloydia (англ.)русск.. — 1976. — Vol. 39, no. 2—3. — P. 150—157.
  27. Wieland T.
    Poisonous Principles of Mushrooms of the Genus Amanita (англ.) // Science. — 1968. — Vol. 159, no. 3818. — P. 946—952.
  28. Bresinsky A., Besl H.
    Giftpilze. Ein Handbuch fur Apotheker, Arzte und Biologen. — Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1985.
  29. Elonen E., Tarssanen L, Harkonen M.
    Poisoning with broun fly agaric, Amanita regalis // Acta Med. Scand. — 1979. — Т. 205, № 1—2. — С. 121—123.
  30. 123Беккер А.М., Гуревич Л.С. и др.
    Индольные галлюциногены псилоцибин и псилоцин у высших Базидиомицетов // Микология и фитопатология : Журнал. — 1985. — Т. 19, № 5. — С. 440—448.
  31. Ott J., Guzman G.
    Detection of psilocybin in species of Psilocybe, Panaeolus and Psathyrella // Hum. Toxicol : Журнал. — 1982. — Т. 1, № 4. — С. 417—424.
  32. 12Нездойминого Э. П.
    Семейство Паутинниковые. (Определитель грибов России: порядок Агариковые; Вып. 1). — СПб.: «Наука», 1996. — ISBN 5-02-026035-5.
  33. 12Hoffer A., Osmond H.
    The hallucinogens. — New York, London: Acad. Press, 1967.
  34. 12Hofmann A., Heim R., et al.
    Psilocybin and psilocin, two psychoactive components of the Mexican intoxicating mushroom // Helv.Chim. Acta : Журнал. — 1959. — Т. 42. — С. 1557.
  35. Столяров Г.В.
    Лекарственные психозы и психотомиметические средства. — М.: «Медицина», 1964.
  36. 12Berkenbaum C.
    Psilocybine intoxication: auto-observation // Evol. Psychiatr. (Paris). — 1969. — Т. 34, № 4. — С. 817—848.
  37. Levine W.G.
    Formation of blue oxidation product from psilocybin // Nervenarzt : Журнал. — 1999. — Т. 70, № 11. — С. 1029—1033.
  38. Hofmann A.
    Psychotomimetic substances // Ind.J.Pharm : Журнал. — 1963. — Т. 25. — С. 245.
  39. 123Gusman G., Allen J., Gartz J.
    A Worldwide Geographical Distribution of the Neurotropic Fungi (англ.) (pdf). — Географическое распространение нейротропных грибов. Дата обращения 15 февраля 2010. Архивировано 15 февраля 2012 года.
  40. 12Agurell S., Blomkvist S.
    Biosynthesis of psilocybin in submerged culture of Psilocybe cubensis // Acta Pharm. Suec. — 1966. — Т. 3. — С. 37—44.
  41. 12Bigwood J., Beug M.W.
    Variation of psilocybyn and psilocin levels with repeated flushes (harvests) of mature sporocarps of Psilocybe cubensis (Earle)Singer // J.Ethnopharm. — 1982. — Т. 5, № 3. — С. 287—291.
  42. Ott J.
    Notes on recreational use of hallucinogenic mushrooms // Boll. Soc. Mex. Mycol. — 1975. — Т. 9. — С. 131—135.
  43. Beug M.W., Bigwood J.
    Psilocybin and psilocin levels in twenty species from seven genera of wild mushrooms in the Pacific Nortwest, U.S.A // J.Ethnopharm. — 1982. — Т. 5, № 3. — С. 271—285.
  44. Catalfomo P., Tyler V.E.
    Production of psilocybin in submerged culture by Psilocybe cubensis (англ.) // Lloydia (англ.)русск.. — 1964. — Vol. 27, no. 1. — P. 53—65.
  45. Repke D.B., Leslie D.T., Guzman G.
    Baeocystin in Psilocybe, Conocybe and Panaeolus (англ.) // Lloydia (англ.)русск.. — 1977. — Vol. 40, no. 6. — P. 566—578.
  46. Бабаханян Р.В., Бушуев Е.С., и др.
    Морфофункциональные изменения внутренних органов при моделировании отравлений псилоцибинсодержащими грибами // Журн. суд. мед. эксперт : Журнал. — 1999. — Т. 2, № 3. — С. 6—9.
  47. Beck O., Helander A., et al.
    Presence of phenylethylamine in hallucinogenic Psilocybe mushroom: possible role in adverse reactions // J. Anal. Toxicol. — 1998. — Т. 22. — С. 45—49.
  48. Дудка И. А., Вассер С. П.
    Грибы. Справочник миколога и грибника. — Киев: «Наукова думка», 1987. — С. 380.
  49. Gartz J.
    Extraction and analysis of indole derivatives from fungal biomass (англ.) (txt). — Экстракция и анализ индольных производных из грибной биомассы. Дата обращения 15 февраля 2010. Архивировано 15 февраля 2012 года.
  50. G. M. Hatfield, L. R. Brady.
    Occurrence of bis-noryangonin in
    Gymnopilus spectabilis
    (англ.) // Journal of Pharmaceutical Sciences (англ.)русск. : journal. — 1969. — Vol. 58, no. 10. — P. 1298—1299. — doi:10.1002/jps.2600581039.
  51. Вассер С. П.
    Флора грибов Украины. Аманитальные грибы / отв. ред. К. А. Каламээс. — К.: «Наукова думка», 1992. — С. 27. — ISBN 5-12-003226-5.
  52. Benjamin D.R.
    Mushroom poisoning in infants and children: the Amanita pantherina/muscaria group // J. Toxicol. Clin. Toxicol. — 1992. — Т. 30, № 1. — С. 13—22.
  53. Tupalska-Wilczynska K., Ignatowicz R., et al.
    Amanita pantherina and Amanita muscaria poisonings — pathogenesis, symptoms and treatment // Pol.Merkuriusz Lek. — 1997. — Т. 3, № 13. — С. 30—32.
  54. Festi F., Bianchi A.
    Amanita muscaria. Mycopharmacological Outline and Personal Experiences // PM&E. — 1985. — Т. 5, Part 1: Mycological, Chemical and Neuropharmacological Aspects. — С. 1—26.
  55. 12Chilton W.S.
    The course of an intentional poisoning // McIlvainea. — 1975. — Т. 2. — С. 17.
  56. Dawson V.L., Dawson T.M., et al.
    Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures // Proc. Natl. Acad. Sci. U.S.A. — 1991. — Т. 88, № 14. — С. 6368—6371.
  57. Yun H.Y., Dawson V.L., Dawson T.M.
    Glutamate-stimulated calcium activation of Ras/Erk pathway mediated by nitric oxide // Diabetes res. Clin. Pract. — 1999. — Т. 45, № 2—3. — С. 113—115.
  58. Falch E., et al.
    Amanita muscaria in medicinal chemistry. I. Muscimol and related GABA agonists with anticonvulsant and central non-opioid analgesic effects // Natural Products and Drug development. Alfred Benzon Symposium. — 1984. — Т. 20. — С. 49—54.
  59. Keeler M. H.
    Similarity of schizophrenia and the psilocybin syndrome as determined by objective methods // Int. J. Neuropsychiatry : Журнал. — 1965. — Т. 1, № 6. — С. 630—634.
  60. Fischer R., et al.
    Effects of psychodysleptic drug psilocybin on visual perception. Changes in brightness preference // Experientia. — 1969. — Т. 25, № 2. — С. 166—169.
  61. Fischer R., et al.
    Psilocybin-induced contraction of nearby visual space // Agents Actions. — 1970. — Т. 1, № 4. — С. 190—197.
  62. 12Петрова В.И., Ревяко Т.И.
    Наркотики и яды. Психоделики и токсические вещества, ядовитые животные и растения. — Минск: «Литература», 1996.
  63. Benjamin C.
    Persistent psychiatric symptoms after eating psilocybin mushrooms // Br. Med. J. — 1979. — Т. 6174. — С. 1319—1320.
  64. Dubansky B., et al.
    Pathologic laughter as manifestation of the psychotomimetic action of psilocybin // Act. Nerv. Super. — Praha, 1965. — Т. 7, № 3. — С. 307.
  65. Fanciullacci M., et al.
    Hypersensitivity to lysergic acid diethylamide (LSD-25) and psilocybin in essential headache // Experientia. — 1974. — Т. 30, № 12. — С. 1441—1443.
  66. 12Fischer R.
    Sympathetic excitation and biological chronometry // Int. J. Neuropsychiatry. — 1966. — Т. 2, № 2. — С. 116—121.
  67. Ladefoged O.
    The effect of LSD, psilocybin, harmaline and amphetamine on the body temperature of para-chlorophenylalanine pretreated rabbits // Arch. Int. Pharmacodyn. Ther. — 1974. — Т. 208, № 2. — С. 251—254.
  68. Dubansky B., et al.
    The association of proprioceptive sensations and neurologic symptoms after psilocybine // Act. Nerv. Super. — Praha, 1967. — Т. 9, № 4. — С. 376—377.
  69. Fischer R., et al.
    Psilocybin reactivity and time contraction as measured by psychomotor performance // Arzneimittelforschung. — 1966. — Т. 16, № 2. — С. 180—185.
  70. Martindale C., et al.
    The effects of psilocybin on primary process content in language // Confin. Psychiatr. — 1977. — Т. 20, № 4. — С. 195—202.
  71. Weber K.
    Changes of musical expression under the effect of psilocybine // Schweiz. Arch. Neurol. Neurochir. Psychiatr. — 1967. — Т. 99, № 1. — С. 176—179.
  72. Guzman G.
    The genus Psilocybe. — Nova Hedwigia, 1983.
  73. Gable R.S.
    Toward a comparative overview of dependence potential and acute toxicity of psychoactive substances used nonmedically // Am. J. Drug Alcohol Abuse. — 1993. — Т. 19, № 3. — С. 263—281.
  74. Thatcher K., et al.
    Personality trait dependent performance under psilocybin // Dis. Nerv. Syst. — 1970. — Т. 31, № 3. — С. 181—192.
  75. Костырко Т. А.
    Отравление псилоцибинсодержащими грибами (клинико-экспериментальное исследование). — Диссертация на соискание учёной степени кандидата медицинских наук. Санкт-Петербургский государственный медицинский университете им. акад. И. П. Павлова, Институт токсикологии МЗ РФ, 1998. Автореферат
  76. Бабаханян Р.В., Иванова Г.В., и др.
    Судебно-химическое исследование псилоцибинсодержащих грибов // Журн. суд. мед. эксперт : Журнал. — 1998. — Т. 41, № 6. — С. 24—26.
  77. Spengos K., Schwarts A., Hennerici M.
    Multifocal cerebral demyelination after magic mushroom abuse // J. Neurology. — 2000. — Т. 247, № 3. — С. 224—225.
  78. Borowiak K.S., Ciechanowski K., Waloszczyk P.
    Psilocybin mushroom (Psilocybe semilanceata) intoxication with myocardial infarction // J. Toxicol. Clin. Toxicol. — 1988. — Т. 36. — С. 47—49.
  79. Raff E., Hallora P.F., Kjellstrand C.M.
    Renal failure after eating «magic» mushrooms // Can. Med. Assoc. J. — 1992. — Т. 147, № 9. — С. 1339—1341.
  80. Sponsored by
    . Drugs that Cause the Most Harm, in The Economist (англ.), Economist.com (2 November 2010).
  81. John Hopkins probes «Sacred» Mushroom Chemical (англ.). Newswise.com (13 June 2011).
  82. Статья 231. Незаконное культивирование растений, содержащих наркотические средства или психотропные вещества либо их прекурсоры (неопр.)
    .
    КонсультантПлюс
    . Дата обращения 28 июня 2020.
  83. Статья 10.5. Непринятие мер по уничтожению дикорастущих растений, содержащих наркотические средства или психотропные вещества либо их прекурсоры (неопр.)
    .
    КонсультантПлюс
    . Дата обращения 28 июня 2020.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: